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ABSTRACT: Nanoparticle superlattices are key to realizing
many of the materials that will solve current technological
challenges. Particularly important for their optical, mechanical
or catalytic properties are superlattices of anisotropic (non-
spherical) nanoparticles. The key challenge is how to program
anisotropic nanoparticles to self-assemble into the relevant
structures. In this Article, using numerical simulations, we
show that “hairy” ( f-star) or DNA grafted on nanocubes
provides a general framework to direct the self-assembly into
phases with crystalline, liquid crystalline, rotator, or noncrystalline phases with both long-range positional and orientational order.
We discuss the relevance of these phases for engineering nanomaterials or micromaterials displaying precise orientational order,
realization of dry superlattices as well as for the field of programmed self-assembly of anisotropic nanoparticles in general.

■ INTRODUCTION

Nanoparticle superlattices (NPS), arrangements of nano-
particles (NPs) into periodic structures, have direct applications
for novel fuel cell membranes, solar photovoltaics, carbon
dioxide storage, or catalytic materials among many others. The
optimal strategy to engineer NPS is self-assembly, where the
different components spontaneously assemble into the desired
material. Yet, direct self-assembly of NPs into NPS is
considerably difficult, as it only succeeds under very precise
environmental conditions.1−5 An alternative elegant route is to
program self-assembly by controlling NPs interactions through
a linker molecule such as DNA.6,7 Over the past few years,
DNA programmed self-assembly has proven to be an extremely
versatile and general strategy to engineer NPS.8−11

Systems of spherical NPs with isotropically distributed DNA
strands have been widely studied and exhibit a very rich phase
diagram,11 yet, many of the relevant NPS required in
applications can only be self-assembled if the components
(the NPs) display some degree of anisotropy. Precision NP
synthesis provides different ways of inducing NP anisotropy,
such as geometry (or shape), patchiness, etc.12 DNA
programmed self-assembly of NPs with different shapes such
as rods, prism, triangles, octahedra, and dodecahedra have
shown typical anisotropic NPS such as hexagonal and lamellar10

as well as linear mesostructures.13

In this paper, we provide a characterization of the phase
diagram and the dynamics of nanocubes (NCs), one of the
simplest anisotropic nanoparticles, with attached ssDNA
strands. We consider hard cubes, the case of ssDNA without
complementary base pairs (an f-star polymer system) and with
complementary strands (standard hybridization), as shown in
Figure 1. The studies will be entirely conducted by the model
previously developed by our group:14 Because of its success in

predicting equilibrium phases for spherical NPs, both for equal
radii14 as well as different radii,15,16 1D structures of triangular
prisms17 and the dynamics of self-assembly,16,18 in all cases with
nearly perfect agreement with experiments and without fitting
parameters, the model has earned an obvious status as a very
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Figure 1. (a) Representation of the three NC systems studied in this
paper: hard, f-star, and standard hybridization. (b) Cartoon of NC
showing parameters L, ns, nl, r, and normal vector Z⃗. (c) Example
Gauss map for a single NC showing normal vectors of a cube mapped
onto a sphere S2.
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rigorous and faithful representation of the actual experimental
system.
All previous studies dealing with NC have focused on the

simple case of hard cubes (see Figure 1), where the phase
diagram is a function of the packing fraction only. Monte Carlo
calculations determined a liquid and solid simple cubic (sc)
crystal for small and close to one packing fractions respectively,
separated by an intermediate cubatic phase.19,20 Recent
studies,21 however, have disputed the existence of the cubatic
phase and proposed a crystalline phase with a high vacancy
density instead. Experimental models of hard cubes exist, in
NCs22 as well as colloidal-sized cubes,23 and have revealed both
the liquid and the sc crystal. Somewhat more complex systems
consisting of cubes under variable surfactant coverings,24 show
a continuous transformation from a sc (at zero covering) to fcc
(at maximum covering), which has been interpreted in terms of
packings of “superballs”,25 intermediate shapes between cubes
and spheres. Yet, the experimentally relevant case of nanocubes
grafted with polymers, the subject of this paper, has remained a
completely unexplored problem, despite its obvious implica-
tions for the engineering of new materials.

■ METHODS
We consider cubes that are L beads long, where each bead has
diameter σ ≈ 2 nm.14 Each cube contains r ssDNA, and each strand
consists of nt flexible monomers of diameter σ. In the standard
hybridization case, the nt monomers consist of ns spacers and nl linkers,
with nt = ns + nl, while for the f-star case nt = ns (see Figure 1). The
parameters describing the system are the packing fraction ϕ, the
grafting density ν, and the fractional polymer length λ, defined as
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where V is the volume of the system and N the number of NCs. For
simplicity, and consistently with previous studies, the number of
linkers will be fixed to nl = 3.14,18 In the standard hybridization case,
half of the NCs (N/2) have complementary linker ssDNA strands to
the other half. For comparison with experiments, L = 6 and 9
corresponds to physical NC lengths of 12 and 18 nm, respectively, and
the simulations cover ssDNA in the ns = 5−50 base pair (bp) range
and nl = 20 bp.
Simulations were carried out under both the NPE ensemble using

the Berendsen thermostat and NVT ensembles using the Nose-́
Hoover thermostat, with some refinements discussed below. The time
step was δt = 0.005 (simulation units of (mσ2/ε)1/2) and simulations
used the HOOMD blue software package (highly optimized object-
oriented many particle dynamics), a highly parallelized version of MD
designed to run entirely on GPUs.26,27 The beads on each NC are held
together by rigid body dynamics.28 Because the model is the same as
the one used in previous studies, we refer to the original references14,18

for further technical details. Initial configurations are randomly
generated using packmol.29 Visual inspection and analysis were carried
out using vmd.30 Extensive simulations were done for system sizes N =
54−128. In some cases, finite size effects were assessed by running
larger systems of up to N = 256 and 512 NPs.
Phases of NCs may exhibit orientational (liquid crystalline) or

positional (plastic/rotator) order or both. Positional order is
characterized from the local bond order parameters,31 which allows
identification of solid particles with a particular symmetry. The total
number of solid particles thus extracted is presented as the fraction of
solid particles within the system f n(solid), where n = 4, 6, are sensitive
to four-fold or six-fold symmetries. Additional characterization of

positional order is provided by the static structure factor S(q ⃗) and the
radial distribution function g(r)⃗, as used in previous studies.14,18,32 The
number of configurations of a cube with six indistinguishable faces is
the same as the elements of the manifold defined by SO(3)/Oh, where
Oh is the 48 element point group defining the cube isometries, thus, a
convenient order parameter is
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where Z⃗i
μ are the normal vectors to each of the six NC faces (μ = 1−6)

and i = 1, ..., N runs through each NC on the system (Figure 1). The
index νl indicates that only the NC normal closest to the direction
defined by the fixed vector w⃗l in the laboratory frame is included in the
average. The elements of the matrix Mαβ and a more detailed
discussion are provided in Supporting Information S1 and S2. The
order parameter thus defined is such that Qαβ

l ≠ 0 if there is
orientational order. In this case, the three Nαβ

l eigenvalues identify the
different phases, and in figures they are displayed as an order
parameter defined in Supporting Information S7.

A complementary way to characterize orientational order is through
a Gauss map (see Figure 2, where each of the six normals of every cube

is mapped into the sphere S2, see Figure 1c) In this paper, only four
types of orientational order need to be considered: isotropic (I), C,
anti-C (A), and Bakos (B). The Gauss map for each case is shown in
Figure 2, and the eigenvalues of the Nαβ

l are provided in Supporting
Information S7.

The rotational dynamics are characterized from the rotational
diffusion coefficient, Da, defined as
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where α represents a preselected normal to the cube that is followed
over time.

We label the different phases by its orientational and positional
order. In addition, within standard hybridization, NCs with the same
ssDNA sequence may display long-range positional order, which
herein we denote as AB order. The standard CsCl-bcc found with
spherical NPs8,9 is an example of AB order. If such order is not
present, it is denoted as D (disordered). The phases are labeled
according to the convention:

−AB or D orientational order positional order

Thus, in an AB A-bcc phase, NCs display Anti-C orientational order
and bcc positional order. For f-star systems, the prefix AB/D is
meaningless, as all NCs are identical. It should be noted that, despite
exhibiting both long-range positional and orientational order, phases
are not necessarily crystalline, as there may not be a unit cell from
which the lattice may be constructed by translations.

■ RESULTS AND DISCUSSION
f-Star NCs. The phase diagram for f-star NCs was obtained

from compression and expansion runs, similarly as in ref 19, but
with some important modifications as compression rates were
adjusted at the liquid-to-solid transition. The resulting phase

Figure 2. Gauss map of the four types of orientational order
considered in this paper. Yellow dots represent the positions of cube
normals. α is the size of the aperture angle.
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diagrams were obtained by repeating entire compression runs
many times and using different compression rates as well as
cycles over compression and expansion runs to ensure that the
process was quasistatic and represented a succession of
equilibrium states.
The resulting phase diagram is shown in Figure 3 for

isotropic pressure for system sizes ranging from 54 to 1400
NCs. The case λ = 0 corresponds to hard cubes and includes an
I-Liquid and a C-sc phase only (see snapshot in Figure 5). As a
function of λ the C-sc phase becomes unstable, being replaced
by a triclinic (tric) phase (snapshots in Figure 5), first as an I-
tric(R), which converges to C-tric at higher packing densities.
The equation of state is shown in Figure 3b as a function of
packing fraction ϕ. There is a small change in slope of the
equation of state when there is coexistence as clusters of solid
particles begin to nucleate from the liquid (Figure 3b, middle),
and a discontinuity in the equation of state at the disorder−
order transition. Discrimination between the disorder and order
transition is provided by the g(r) (Figure 3b, bottom), which
shows a disordered distribution for the liquid and distinct peaks
for the ordered structure in I-tric(R). A snapshot of a C-tric
phase for N = 512 NC and λ = 0.66 is shown in Figure 4. Two

different orientational domains can be seen in the system,
denoted by red and blue colors. The unit cell for the C-tric is
drawn in Figure 4, where angles α ≠ β ≠ γ. It was found that
the angles α, β, and γ did not significantly change as a function
of packing fraction, ϕ, but did show considerable variation as a
function of polymer length λ. As λ grows larger, the triclinic
unit cell approaches the bcc limit seen in spherical NPs.14

Explicit results are provided in Supporting Information S8.
Within the NVT ensemble, compression runs may result in

anisotropic pressures pxx ≠ pyy ≠ pzz with off-diagonal terms
being zero. For the case of high anisotropic pressure, the phase
diagram shows surprising new phases (Figure 6a). For small λ a
B-bcc phase is formed, where each NC is oriented in one of the
four discrete orientations that define the Bakos four-cube
compound,33 see snapshots and Gauss map in Figure 5 (see
also Supporting Information S4 and S5). As λ is increased to
≳1, the B-bcc phase is replaced by an A-bcc (Anti-C) phase,
where cube orientations on a cone of aperture angle α around
the six orientations defined by C orientational order are not
allowed; see Figure 5 for snapshot and the ideal Gauss map in
Figure 2. The typical anisotropic pressures that develop in the
A-bcc (R) and B-bcc are shown in Figure 6b.
Phases with anisotropic pressure are only found in

simulations with up to 128 NCs, but we note that we did
not attempt to simulate larger systems (using the NPE
ensemble with Berendsen thermostat) as it is technically
challenging to stabilize large anisotropic pressures. However,
because we repeatedly obtained such phases regardless of
compression rates, these phases are stable and not an artifact of
the boundary conditions.
The rotational diffusion coefficients Da (defined in eq 3) are

plotted in Figure 7. It is clear that the NCs rotate considerably,
and this is denoted with (R), rotator phases, in the phase
diagram Figures 3 and 6. The variations of f6, f4, Da, and Qαβ as
functions of packing fraction are shown in Figure 7. The hard
NCs systems show a transition from an I-liquid to a C-sc with
no evidence for an intermediate liquid crystalline cubatic phase
within ϕ = 0.52−0.56 (Figure 3), in disagreement with19,20 but
consistent with the presence of vacancies recently reported in
ref 21, although the system sizes investigated are smaller.
We find that there is significant competition between

orientational and positional order in these systems. The system
either has bcc positional order which allows for four

Figure 3. (a) Phase diagram for f-star NCs as a function of λ and ϕ (defined in eq 1) for isotropic pressure. (b) Equation of state (top) and fraction
of solid particles (middle) as a function of packing fraction, ϕ, for a system of NCs, λ = 0.66, during the transition from liquid C-tric under
compression. (Bottom) g(r) for the liquid and crystal at points A and B before and after the disorder−order transition. All lines are drawn to guide
the eye.

Figure 4. Snapshot of f-star C-tric at λ = 0.66 and packing fraction ϕ =
0.45 for isotropic pressure. There are two orientational domains found
within the crystal, drawn as blue and red. Purple cubes are part of
defects which do not follow the red or blue domains. The polymer is
hidden for clarity. (Top right) Unit cell for C-tric showing blue cube
orientation. (Bottom right) Definition of the primitive vectors.
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orientations of NCs or a distortion of the bcc which favors a
single orientation. Systems with triclinic positional order tend
to have C orientational order, as the triclinic positional order
breaks the orientational symmetry allowing a single preferential
orientation of NCs to dominate. Defects such as interstitials in
the system can have a large effect on orientation ordering
making crystals with single orientations difficult to achieve
(Figure 4). The length of the polymer will also have an effect
on the degree to which the system is triclinic. While the system
approaches bcc limit for increasing value of λ, our results clearly
suggest that it does so through an intermediate orthorhombic
lattice, as shown in Supporting Information S8.
Standard Hybridization of NCs. The case of standard

hybridization, where DNA linkers are able to hybridize presents
considerable challenges. As previously found, spherical NPs
above the DNA melting temperature, Tc, become equivalent to
an f-star system, while it is only for temperatures just slightly
below Tc that the system may equilibrate within available
simulation time.14 Constant temperature MD becomes very
challenging because of the slow rotational diffusion of NCs. For
this reason, all MD runs were started with a random
configuration at T > Tc, subsequently annealed to the target
temperature T < Tc. Typical examples of annealing runs are
shown in Figure 8.
The phase diagram depends on T as well as the three

parameters ϕ, ν, and λ defined in eq 1. To reach a greater range

for the values of λ the phase diagram for NC of length L = 12
and 18 nm was obtained as a function of T (see Figure 9),
which is consistent for both NC sizes. Long-range order was
obtained for grafting densities ν ≳ 0.25, so we will present
results for ν = 0.25. The phase diagram as a function of T and λ
is shown in Figure 10. For T > Tc the system is equivalent to a
f-star system, and the same D I-bcc phase of Figure 6 is
obtained. Below Tc, the system aggregates into condensed
phases, which are AB C-sc and AB I-bcc phases, with typical
snapshots shown in Figure 8.
These results show how DNA hybridization can be used to

control orientational order. For short DNA, λ < 1, NCs orient
face to face, forming a C-sc superlattice, but, as the DNA
strands are increased in length, NCs become isotropically
distributed, akin to an orientational glass. Additionally, studies of
DNA-hybridized 1D prisms17 have shown a similar relationship
between orientational order and DNA length, suggesting that
face to face ordering for λ < 1 may be general result for other
geometries as well.
The connection between the phases of f-star systems and

standard hybridization becomes even more clear by subjecting
the latter to finite osmotic pressure, by slowly compressing the
system right below Tc. Starting with AB I-bcc phases, the phase
diagram as a function of osmotic pressure (or packing fraction)
becomes basically equivalent to the one obtained for f-star
polymers (Figure 6 for anisotropic pressure), despite the

Figure 5. Phases for hard NC C-sc (a), and f-star system, C-tric (b) and B-bcc (c) and A-bcc(d), as a function λ (fractional polymer length) at high
grafting density ν = 0.65 (see eq 1 for parameter definitions). (Top) Structure factors, S(q ⃗), with bcc peaks labeled. (Middle) Gauss map showing the
normals of each NC mapped on to a sphere. Yellow beads in Gauss map are the ideal case (see 2). (bottom) Snapshots of each phase with the
polymer removed in b−d for ease of viewing. Colors of NCs correspond to cube orientations as identified in the Gauss maps (middle).
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pressure being isotropic for ssDNA hybridized phases. An
equilibrated AB A-bcc phase under compression is shown in
Figure 10.

■ CONCLUSION
In this paper we have provided, for the first time, the
characterization of the phase diagram for cubes with grafted
polymers (“hairy” or f-star systems) as well as with hybridizable
DNA linkers. The results for f-star systems show a phase
diagram with triclinic unit cells. The triclinic unit cell
interpolates in between sc(hard cubes, zero polymer length)
and bcc(long polymers described by spherical f-star systems),
similarly as cuboid systems interpolate between sc and fcc24,25

For significantly anisotropic osmotic pressures, the system
exhibits a perfect bcc (cubic space group) but with complex
orientational order (A or B, see Figure 5). Our results show
that the geometric frustration induced by the polymer generates
a competition between orientational order and a loss of cubic
symmetry against a loss of orientation order and cubic
symmetry; it is not possible to have both orientaional order
and cubic symmetry, as is the case for hard cubes, since this
situation is inefficient in accommodating the grafted polymer
within the unit cell. As a result of the geometric frustration
induced by the polymer, a more detailed study may reveal a
finer additional structure beyond that predicted in this paper.
Our study of NCs provides the first characterization of DNA

programmed self-assembly with anisotropic (nonspherical)

NPs. Our results show that for short DNA strands, the phase
diagram consists of NCs that hybridize face to face, resulting in
sc lattices. As the DNA becomes longer, the bcc phase of
spherical systems is obtained. At finite osmotic pressures, a
more complex phase diagram, with phases that reproduce those

Figure 6. (a) Phase diagram f-star NCs as a function of λ and packing
fraction, ϕ, for anisotropic pressures. (b) Equation of state showing
pxx, pyy, and pzz for a system of N = 128, λ = 1 which forms B-bcc under
compression. Approximate ratios of pressure for A-bcc (R) are pxx:pyy
= 1.1, pxx:pzz = 2.25, and for B-bcc are pxx:pyy = 0.96, pxx:pzz = 0.92.

Figure 7. Compression runs for hard NCs (N = 125) (top left) and f-
star polymers systems (N = 128, ν = 0.65): λ = 0.66 (top right), 0.66
(bottom left), and 2.0 (bottom right). The percentage of solid particles
defined by local bond ordering with bcc and tric, f6(solid), as well as sc,
f4(solid), positional order are plotted in green and yellow, respectively.
The normalized rotational diffusion coefficient, Da*, is plotted where
unity is the resolution of our simulation time step. The orientational
order parameter, Qαβ, is plotted as well with respect to the vector
which maximizes Qαβ for each system (see Supporting Information
S4−S7). All lines are drawn to help guide the eye.

Figure 8. (Top) Dynamics for standard hybridization for simulations
starting from a random configuration above Tc and cooling: (top left)
λ = 0.44, ν = 0.25; (top right) λ = 2, ν = 0.25. (Bottom) Snapshots of
the phases AB C-sc and AB I-bcc obtained. DNA is drawn in orange,
and hybridization locations are marked as rings. Type A/B NCs are
drawn in red/blue.
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of the f-star NCs, but with additional type order (AB), are
predicted.
The significance of our results extends beyond nanoscience,

as f-star systems of colloidal size can be easily realized by
grafting polymers to cubes with desired grafting densities ν and
fractional polymer lengths λ, with the packing fraction being
controlled by the same techniques used by Rossi et al.23 for
hard cubes. Yet, unlike the case of hard cubes, the presence of a
polymer shell allows for UV polymerization and the ability to
synthesize dry materials. Alternative routes are provided by
plasma polymerization techniques,35 which allow replacing the
polymer by inorganic components. In this way, our predicted
phases for f-star polymers provide a strategy to design new
materials consisting of cubes where the orientations can be
exquisitely adjusted.
The results in this paper have important implications for the

DNA programmed self-assembly of NCs and other anisotropic
NPs. Our results predict that for relatively short DNA strands,
NCs are oriented face to face, but many other superlattices can
be obtained by subjecting the system to an external osmotic
pressure. It is not difficult to control osmotic pressure in
nanoscale systems, as existing techniques are available.36 There
are also different strategies that allow transferring those
materials to dry conditions.
Probably, the main difficulty for experiments with NCs are

the sluggish dynamics resulting from rotational diffusion and
the annihilation of topological defects. This is a particularly
important subject for growing the type of high-quality crystals
obtained with spherical NPs.18 A detailed description of the
dynamics of self-assembly is left for future work.

■ ASSOCIATED CONTENT
*S Supporting Information
Details of the orientational order parameters used to identify
the different types of orientational order presented in this
paper, simulation results for the unit cell of the C-tric phase as a
function of λ, and details for unit cell analysis. This material is
available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
cdknorow@iastate.edu

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We acknowledge discussions and interest with R. Kamien and
O. Gang. We also thank J. Anderson for help with HOOMD-
blue as well as Martin Bertrand for help with the Berendsen
thermostat. This work is funded by the U.S. DOE through the
Ames Laboratory under Contract DE-AC02-07CH11358.

■ REFERENCES
(1) Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. Nature
1998, 396, 444.
(2) Wong, S.; Kitaev, V.; Ozin, G. J. Am. Chem. Soc. 2003, 125,
15589.
(3) Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.;
Bishop, K. J. M.; Grzybowski, B. A. Science 2006, 312, 420.
(4) Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S.;
Murray, C. B. Nature 2006, 439, 55.
(5) Zheng, J.; Constantinou, P. E.; Micheel, C.; Alivisatos, A. P.;
Kiehl, R. A.; Seeman, N. C. Nano Lett. 2006, 6, 1502.
(6) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature
1996, 382, 607.
(7) Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.; Loweth,
C. J.; Bruchez, M. P.; Schultz, P. G. Nature 1996, 382, 609.
(8) Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G.
C.; Mirkin, C. A. Nature 2008, 451, 553.
(9) Nykypanchuk, D.; Maye, M. M.; van der Lelie, D.; Gang, O.
Nature 2008, 451, 549.
(10) Jones, M. R.; Macfarlane, R. J.; Lee, B.; Zhang, J.; Young, K. L.;
Senesi, A. J.; Mirkin, C. A. Nat. Mater. 2010, 9, 913.
(11) Macfarlane, R. J.; Lee, B.; Jones, M. R.; Harris, N.; Schatz, G. C.;
Mirkin, C. A. Science 2011, 334, 204.
(12) Glotzer, S. C.; Solomon, M. J. Nat. Mater. 2007, 6, 557.
(13) Vial, S.; Nykypanchuk, D.; Yager, K.; Tkachenko, A.; Gang, O.
ACS Nano 2013, 7, 5437.
(14) Knorowski, C.; Burleigh, S.; Travesset, A. Phys. Rev. Lett. 2011,
106, 215501.
(15) Li, T.; Sknepnek, R.; Macfarlane, R. J.; Mirkin, C. A.; Olvera de
la Cruz, M. Nano Lett. 2012, 12, 2509.
(16) Li, T.; Sknepnek, R.; Olvera de la Cruz, M. J. Am. Chem. Soc.
2013, 135, 8535.
(17) Kohlstedt, L.; Olvera de la Cruz, M.; Schatz, G. J. Phys. Chem.
Lett. 2012, 4, 203.
(18) Knorowski, C.; Travesset, A. Soft Matter 2012, 8, 12053.
(19) John, B.; Stroock, A.; Escobedo, F. J. Chem. Phys. 2004, 120,
9383.
(20) Agarwal, U.; Escobedo, F. Nat. Mater. 2011, 10, 230.
(21) Smallenburg, F.; Filion, L.; Marechal, M.; Dijkstra, M. Proc. Natl.
Acad. Sci. U.S.A. 2012, 109, 17886.
(22) Yamamuro, S.; Sumiyama, K.; Kamiyama, T. Appl. Phys. Lett.
2008, 92, 113108.
(23) Rossi, L.; Sacanna, S.; Irvine, W. T. M.; Chaikin, P. M.; Pine, D.
J.; Philipse, A. P. Soft Matter 2011, 7, 4139.

Figure 9. Phase diagram of standard hybridization as a function of nt
and Tc for L = 6σ and L = 9σ NCs. The packing fraction is determined
from the I-bcc phase separately for each nt.

Figure 10. (a) Generalized phase diagram of standard hybridization as
a function of λ and T. (b) Snapshot of an AB A-bcc phase obtained at
finite osmotic pressure by compressing an AB I-bcc (R) (λ = 1.33, L =
6σ).

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja406241n | J. Am. Chem. Soc. 2014, 136, 653−659658

http://pubs.acs.org
mailto:cdknorow@iastate.edu


(24) Zhang, Y.; Lu, F.; van der Lelie, D.; Gang, O. Phys. Rev. Lett.
2011, 107, 135701.
(25) Jiao, Y.; Stillinger, F.; Torquato, S. Phys. Rev. E 2009, 79,
041309.
(26) Anderson, J.; Lorenz, C.; Travesset, A. J. Comput. Phys. 2008,
227, 5342.
(27) http://codeblue.umich.edu/hoomd-blue/
(28) Nguyen, T.; Phillips, C.; Anderson, J. A.; Glotzer, S. C. Comput.
Phys. Commun. 2011, 182, 2307.
(29) Martinez, L.; Andrade, R.; Birgin, E. G.; Martinez, J. M. J.
Comput. Chem. 2009, 30, 2157.
(30) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996,
14, 33.
(31) Steinhardt, P.; Nelson, D.; Ronchetti, M. Phys. Rev. B 1983, 28,
784.
(32) Knorowski, C.; Travesset, A. Curr. Opin. Solid State Mater. Sci.
2011, 15, 262.
(33) Bakos, T. Math. Gazz. 1959, 43, 17.
(34) Watzlawek, M.; Likos, C.; Lowen, H. Phys. Rev. Lett. 1999, 82,
5289.
(35) Cademartiri, L.; Ghadimi, A.; Ozin, G. Acc. Chem. Res. 2008, 41,
1820.
(36) Leonard, M.; Hong, H.; Easwar, N.; Strey, H. Polymer 2001, 42,
5823.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja406241n | J. Am. Chem. Soc. 2014, 136, 653−659659

http://codeblue.umich.edu/hoomd-blue/

